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A B S T R A C T

We may not know the entire feature space in advance for real-world applications, and features can exist in a
stream mode, called streaming features. Online streaming feature selection aims to select optimal streaming
features on the fly and can be summarized into three main components: irrelevant feature discarding, relevant
feature selecting, and redundant feature removing. Therefore, the core issue of the streaming feature selection
framework is the calculation of the relationship between features. This paper applies Rough Set models to
discover the feature relationships for the most crucial advantages: they do not require any domain knowledge
and can measure the selected features as integral. After the formal definitions of feature relevance, irrelevance,
and redundancy from the Rough Set perspective, we analyze and abstract the feature relationship calculation
from three levels: Rough Set model, positive region, and consistency calculation. Then we design a novel
general assembly Rough Set based Streaming Feature Selection Framework, named RS-SFSF, which could
assemble new algorithms for different problems step by step. Researchers in different areas can quickly build
the algorithms they need based on our new framework. To demonstrate the effectiveness of RS-SFSF, we
derived four new algorithms based on RS-SFSF by using the classical Rough Set model, neighborhood Rough
Set model, and fuzzy Rough Set model, respectively. Extensive experiments conducted on twelve real-world
datasets indicate the efficiency of our new framework.
1. Introduction

Feature selection aims to select a minimal subset of features from
the original high-dimensional feature space, which is an essential tech-
nique for pattern recognition, machine learning, and data mining (Li
et al., 2017). Feature selection methods can be broadly categorized
as the filter (Cekik & Uysal, 2020), wrapper, and embedded (Yang
et al., 2020) according to different selection strategies (Guyon & Elis-
seeff, 2003). In the past decade, feature selection has attracted many
researchers’ attention, and plenty of different feature selection methods
have been proposed (Cai et al., 2018).

Streaming features are defined as features that flow in one by one
over time, whereas the number of samples remains fixed (Wu et al.,
2013). There are two main reasons for online streaming feature selec-
tion: (1) the features exist in a stream mode in practice; (2) the target
datasets are too large to be loaded into the memory once, and we need
to handle it in pieces. Specifically, for some real-world applications,
not all the features can be required before learning, and the features
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may exist in a stream mode (Wu et al., 2013). For example, in bioinfor-
matics, for the high cost of conducting wet-lab experiments, acquiring
the complete set of features for every training instance is prohibitive,
and it is impossible to wait for a complete set of features (Wang et al.,
2013). In industrial production, the products processed by different
equipments always go through different production processes over
time, and continuously generate the streaming features of the same
product (Rehman et al., 2018). Besides, with the rapid growth of data
volume and dimensions, traditional batch-mode feature selection meth-
ods cannot meet the demand of efficiency any more (Wu et al., 2014).
For high-dimensional datasets, even if the feature space is known, we
can still apply streaming feature selection for the extra advantages,
such as low time and space consumptions. Streaming feature selection
presents a new perspective in dealing with high-dimensional datasets
and has been demonstrated to be effective (Hu et al., 2018).

Unlike traditional feature selection methods, there are two main
challenges for online streaming feature selection. First, we cannot
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Fig. 1. A generalized streaming feature selection framework.
acquire the information of the entire feature space before learning. It is
difficult for some feature selection methods to set proper parameter val-
ues in advance for all different datasets without prior knowledge. Thus,
the streaming feature selection method should not depend on prior
knowledge. Second, the methods must immediately decide whether to
keep or discard the new arrival feature on the fly. Once a new arriving
feature is discarded, we cannot use it again. Thus, we need to consider
the new arrival feature’s relationship and the selected feature subset
as an integral. Meanwhile, we cannot compare each feature multiple
times and rank them globally. In terms of these, most traditional feature
selection methods assume all features are known before learning and
cannot handle online streaming feature selection directly.

Generally speaking, features can be categorized into three disjoint
groups, namely, strong relevance, weak relevance, and irrelevance (Ko-
havi & John, 1997). For online streaming feature selection, we sum-
marize the procedures into three main steps: (1) irrelevant feature
discarding; (2) relevant feature selecting; (3) nonsignificant/redundant
feature removing, shown as Fig. 1. In general, we discard irrelevant fea-
tures, select relevant features and remove redundancy(nonsignificant)
features in the selected feature subset. Therefore, the critical issues for
streaming feature selection framework are the calculation or judgment
of the relationship between features.

1.1. Rough set based online streaming feature selection

There are many online steaming feature selection methods based
on different techniques (Hu et al., 2018), such as regularized frame-
work (Perkins & Theiler, 2003), statistical information (Wu et al.,
2013), and mutual information (Yu et al., 2016). In this paper, we
apply the Rough Set models (Pawlak, 1991) to measure the information
between features for two critical advantages: (1) they does not require
any domain knowledge other than the given dataset; (2) based on the
measurement of dependency degree, they can measure the performance
of a candidate feature subset as an integral (Yasmin et al., 2020).
The classical Rough Set was initially designed for categorical data.
For real-valued data, some extensions of classical Rough Set, such as
Neighborhood Rough Set (Hu et al., 2021) and Fuzzy Rough Set (Jensen
& Shen, 2008), were proposed to handle it.

Currently, researchers have proposed some Rough Set-based stream-
ing feature selection methods, such as OS-NRRSARA-SA (Eskandari &
Javidi, 2016), K-OFSD (Zhou et al., 2017), OFS-A3M (Zhou et al.,
2019b), OM-NRS (Liu et al., 2018), and OFS-Density (Zhou et al.,
2019a). All these Rough Set-based streaming feature selection methods
get some excellent performance in experiments. However, all these
methods mentioned above were proposed for specific streaming feature
selection problems. For instance, OS-NRRSARA-SA is based on the
classical Rough Set model and cannot deal with continuous data. K-
OFSD was based on the Neighborhood Rough Set model and designed
2

for high-dimensional and class-imbalanced streaming data. OM-NRS
aimed to simultaneously solve online streaming feature selection and
multi-label feature selection based on the neighborhood Rough Set
model. As far as we know, there is no general online streaming feature
selection framework that can assemble new algorithms for different
problems in different areas.

1.2. Our contributions

With the in-depth analysis of the streaming feature selection prob-
lem and the feature relationship calculation from Rough Set perspec-
tive, we propose a new general assembly Rough Set-based Streaming
Feature Selection Framework that can assemble new algorithms for dif-
ferent streaming feature selection problems named RS-SFSF, as shown
in Fig. 2. There are five steps for RS-SFSF. Step 1, we assemble the
feature relationship (dependency) calculation methods from three lev-
els: Rough Set model, positive region, and consistency calculation.
Specifically, we first choose an appropriate Rough Set model for the
target streaming feature selection problem regarding the feature data
type. Then, we design the positive region calculation method and
consistency calculation function according to the specific problem con-
straints and sample distribution. Finally, we assemble these three levels
choices into the feature relationship calculation component. Step 2
constructs the irrelevant feature discarding strategy and discards ir-
relevant streaming features directly for efficiency. Step 3 designs the
relevant feature selecting strategy and selects relevant features into
the candidate feature subset. Step 4 provides the nonsignificant fea-
ture removing strategy and removes nonsignificant features from the
candidate feature subset for compactness. Step 5, we assemble all these
components into a new streaming feature selection algorithm which we
need. Our contributions are as follows:

• With the formal definition and in-depth analysis of the streaming
feature selection problem, we summarize this issue into three
main components: irrelevant feature discarding, relevant feature
selecting, and nonsignificant feature removing.

• We give the formal definitions of feature relevance, irrelevance,
and redundancy from the Rough Set perspective. Meanwhile, to
maintain a high correlation and low redundancy feature sub-
set, we present three evaluation criteria from the feature subset
granularity.

• We propose a new generalized assembly Rough Set-based stream-
ing feature selection framework in terms of definitions of feature
relationships from the Rough Set perspective, named RS-SFSF.
RS-SFSF can use different Rough Set models, dependency calcu-
lation methods, and feature processing strategies to build corre-
sponding new algorithms for various streaming feature selection
problems. Based on the RS-SFSF framework, researchers in dif-
ferent areas can quickly construct the algorithms they need step
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Fig. 2. Our new general assembly Rough Set based online streaming feature selection framework.
by step. Meanwhile, we summarize some existing Rough Set-
based streaming feature selection methods within the RS-SFSF
framework.

• To validate the effectiveness of RS-SFSF, we derive four new
streaming feature selection algorithms based on the RS-SFSF
framework with the classical Rough Set model, neighborhood
Rough Set model (𝛿 neighborhood relation and k-nearest neigh-
borhood relation), and fuzzy Rough Set model, respectively.
Extensive experimental studies indicate that RS-SFSF based algo-
rithms can achieve better predictive accuracy with fewer selected
features.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 gives a brief introduction to the classical Rough
Set model and its two extensions. Section 4 presents the definitions
of feature relationships from Rough Set perspective. Section 5 shows
our new streaming feature selection framework and the derived new
algorithms. Section 6 reports the experimental results, and we conclude
the paper in Section 7.

2. Related work

From the data perspective, feature selection can be divided into
two main categories: feature selection with static data and feature
selection with streaming data (Li et al., 2017). For static data, all
features should be prepared before feature selection taking place. There
are many feature selection methods for static data (Cai et al., 2018).
More specifically, Dai et al. (2018) proposed two quick feature selection
algorithms based on the neighbor inconsistent pair, which can reduce
the time consumption in finding a reduct. Wang et al. (2016) designed
a new fitting model for feature selection, which can guarantee the
membership degree of a sample to its category reaches the maximal
value and effectively prevent samples from being misclassified. Zhang
et al. (2016) proposed a fuzzy Rough Set-based information entropy
for feature selection in a mixed dataset. For streaming data, it can
be further divided into the data stream methods and feature stream
methods. Neumann et al. (2017) proposed the software EFS (Ensemble
Feature Selection) that makes use of multiple feature selection methods
and combines their normalized outputs to a quantitative ensemble
importance. Eight different feature selection methods have been in-
tegrated in EFS, which can be used separately or combined in an
ensemble.

In this paper, we focus on feature selection with feature streams.
More specifically, Grafting (Perkins & Theiler, 2003) was the first
streaming feature selection method based on a regularized framework.
The gradient retesting of Grafting over all the selected features in-
creases the total time cost greatly, and it is not easy to choose a
good value for the important regularization parameter before learning.
3

Alpha-investing (Zhou et al., 2006) was one of the penalized likelihood
ratio methods for streaming feature selection that can run very fast.
However, Alpha-investing does not reevaluate the included features
and can only select the first one or two features for sparse data.
OSFS (Wu et al., 2013) was a conditional independence/
dependence tests-based streaming feature selection method that can
select a very compact feature subset. Nevertheless, conditional inde-
pendence/dependence tests need enough training instances, leading to
information missing for high dimensionality and small sample datasets.
In terms of the Mutual Information theory, SAOLA (a Scalable and Ac-
curate Online feature selection Approach) was proposed for extremely
high-dimensional data based on novel online pairwise comparison
techniques (Yu et al., 2016). Rahmaninia and Moradi (2018) proposed
two online streaming feature selection methods, named OSFSMI and
OSFSMI-k, for evaluating the relevancy and redundancy of features in a
streaming manner. However, these Mutual Information based methods
consider the relationship between pairs of features and cannot measure
all the selected features as integral.

In addition to the methods mentioned above, many researchers have
recently begun applying the Rough Set theory for streaming feature
selection. In terms of the dependency degree model, the Rough Set
based methods can measure the selected features as integral. More
specifically, OS-NRRSARA-SA (Eskandari & Javidi, 2016) was a clas-
sical Rough Set based method that considers the boundary and pos-
itive regions during streaming feature selection. K-OFSD (Zhou et al.,
2017) was a neighborhood Rough Set based streaming feature selection
method that aims to deal with high-dimensional and class-imbalanced
streaming data. Based on a new Neighborhood Rough Set relation
Gap with adaptive neighbors, OFS-A3M (Zhou et al., 2019b) was a
new non-parametric streaming feature selection method that does not
need to specify any optimal parameter values before learning, which
can select features with a high correlation, high dependency, and low
redundancy. Considering the sample distribution problem is usually not
uniform, and the dependency degree with a precisely equal constraint
is too strict for real-world datasets, Zhou et al. (2019a) proposed a new
streaming feature selection method based on an adaptive density neigh-
borhood relation. Liu et al. (2018) proposed a new feature selection
framework that can solve online streaming feature selection and multi-
label feature selection simultaneously based on a new neighborhood
relation. All these streaming feature selection methods demonstrate the
effectiveness of applying Rough Set models for the streaming feature
selection problem. However, there is no systematic analysis and gen-
eralized Rough set-based streaming feature selection framework as far
as we know. Thus, in this paper, we study the streaming feature selec-
tion problem from the Rough Set perspective in-depth and propose a
generalized assembly Rough Set-based framework for streaming feature
selection.
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Table 1
Nomenclature.
𝐶 Condition feature set
𝐷 Decision feature (Class attribute)
𝑛 Sample size
𝑚 Number of features
𝑥𝑖 𝑖th sample
𝑓𝑗 𝑗th feature
𝑈 {𝑥1 , 𝑥2 ,… , 𝑥𝑛}
𝑋 A subset of 𝑈 , 𝑋 ⊂ 𝑈
𝐵 A subset of 𝐶, 𝐵 ⊂ 𝐶
𝑆 𝑡 The selected feature subset at time stamp 𝑡

3. Rough set models

We summarize some notations used in this article as shown in
Table 1.

3.1. Classical rough set

For the classical Rough Set model (Pawlak, 1991), in terms of
attributes 𝐵, the objects with the same feature values are drawn to-
ether and form an equivalence class, denoted by [𝑥]𝐵 . The family of

elemental granules {[𝑥𝑖]𝐵 ∣ 𝑥𝑖 ∈ 𝑈} builds a concept system to describe
an arbitrary subset of the sample space. For 𝐵 and 𝑋, the elemental
granules of lower approximation and upper approximation are defined
as follows:

𝐵𝑋 = {[𝑥𝑖]𝐵 ∣ [𝑥𝑖]𝐵 ⊆ 𝑋, 𝑥𝑖 ∈ 𝑈} (1)

𝐵𝑋 = {[𝑥𝑖]𝐵 ∣ [𝑥𝑖]𝐵 ∩𝑋 ≠ ∅, 𝑥𝑖 ∈ 𝑈} (2)

The lower approximation is also called positive region, denoted as
𝑃𝑂𝑆𝐵 .

Definition 1. The dependency degree of 𝐵 to 𝐷 is defined as the ratio
f consistent objects:

𝐵(𝐷) =
𝐶𝐴𝑅𝐷(𝑃𝑂𝑆𝐵(𝐷))

|𝑈 |

(3)

where 𝐶𝐴𝑅𝐷(𝑃𝑂𝑆𝐵(𝐷)) denotes the number of positive region objects.

However, the classical Rough Set model cannot handle continuous
ata directly. Thus, some extensions of classical Rough Set were pro-
osed, such as neighborhood Rough Set (Hu et al., 2008) and fuzzy
ough Set (Jensen & Shen, 2008).

.2. Neighborhood rough set

In contrast to the classical Rough Set model, the neighborhood
ough Set model uses neighborhood relations to build the concept
ystem (T. & Y., 1998). Different models can be built based on different
eighborhood relationships. There are two main types of neighborhood
elations, including (1) the fixed distance (𝛿 neighborhood); (2) the

fixed number of neighbors (𝑘-nearest neighborhood). The lower ap-
proximation and upper approximation of 𝛿 neighborhood and 𝑘-nearest
neighborhood are defined as follows.

Definition 2. For 𝐵 and 𝑋, the lower and upper approximations of
in terms of the 𝛿 neighborhood relation are defined as

𝛿𝑋 = {𝑥𝑖 ∣ 𝛿(𝑥𝑖) ⊆ 𝑋, 𝑥𝑖 ∈ 𝑈} (4)

𝐵𝛿𝑋 = {𝑥𝑖 ∣ 𝛿(𝑥𝑖) ∩𝑋 ≠ ∅, 𝑥𝑖 ∈ 𝑈} (5)

where 𝛿(𝑥 ) denotes the objects within a fixed radius 𝛿 around 𝑥 .
4

𝑖 𝑖 𝐵
Definition 3. For 𝐵 and 𝑋, we define the lower and upper approxi-
mations in terms of the 𝑘-nearest neighborhood relation as

𝐵𝐾𝑋 = {𝑥𝑖 ∣ 𝐾(𝑥𝑖) ⊆ 𝑋, 𝑥𝑖 ∈ 𝑈} (6)

𝐵𝐾𝑋 = {𝑥𝑖 ∣ 𝐾(𝑥𝑖) ∩𝑋 ≠ ∅, 𝑥𝑖 ∈ 𝑈} (7)

where 𝐾(𝑥𝑖) denotes the 𝑘-nearest neighbors around 𝑥𝑖.

3.3. Fuzzy rough set

In contrast to the classical Rough Set model and the neighborhood
Rough Set model, the fuzzy Rough Set model uses fuzzy similarity
relation to build the concept system (Zhao et al., 2019). Many fuzzy
similarity relations, which describes the similarity between pairs of data
samples, can be constructed for this purpose, such as:

𝜇𝑅𝑎
(𝑥, 𝑦) = 1 −

|𝑎(𝑥) − 𝑎(𝑦)|
|𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛|

(8)

𝜇𝑅𝑎
(𝑥, 𝑦) = 𝑒𝑥𝑝(−

(𝑎(𝑥) − 𝑎(𝑦))2

2𝛿2𝑎
) (9)

where 𝑎 is a feature in 𝐶, 𝑎 is the fuzzy similarity relation induced
by feature 𝑎, 𝑥 and 𝑦 are two arbitrary instances, 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 are the
maximal and minimal values on 𝑎, and 𝛿 is the variance of feature 𝑎.

Fuzzy equivalence classes are central to the fuzzy-rough set ap-
roach just like the crisp equivalence classes are central to Classical
ough Sets.

efinition 4. Given the fuzzy equivalence class  , the fuzzy lower
nd upper approximations are defined as:

𝜇𝑋(𝑥) = 𝑠𝑢𝑝
∈𝑈∕𝐵

𝑚𝑖𝑛(𝜇 (𝑥), 𝑖𝑛𝑓
𝑦∈𝑈

𝑚𝑎𝑥{1 − 𝜇 (𝑦), 𝜇𝑋 (𝑦)}) (10)

𝐵𝜇𝑋(𝑥) = 𝑠𝑢𝑝
∈𝑈∕𝐵

𝑚𝑖𝑛(𝜇 (𝑥), 𝑠𝑢𝑝
𝑦∈𝑈

𝑚𝑖𝑛{𝜇 (𝑦), 𝜇𝑋 (𝑦)}) (11)

here 𝜇 and 𝜇𝑋 are the fuzzy similarity relations induced by 𝐹 and
respectively.

Paper (Radzikowska & Kerre, 2002) gave alternative definitions for
he fuzzy lower and upper approximations where a T-transitive fuzzy
imilarity relation is used to approximate a fuzzy concept 𝑋.

𝜇𝑋(𝑥) = 𝑖𝑛𝑓
𝑦∈𝑈

𝐼(𝜇𝐵
(𝑥, 𝑦), 𝜇𝑋 (𝑦)) (12)

𝐵𝜇𝑋(𝑥) = 𝑠𝑢𝑝
𝑦∈𝑈

𝑇 (𝜇𝐵
(𝑥, 𝑦), 𝜇𝑋 (𝑦)) (13)

here 𝐼 is a fuzzy implicator and 𝑇 is a t-norm. 𝐵 is the fuzzy
imilarity relation induced by the subset of features 𝐵.

. Definitions of feature relationships from rough set perspective

This section gives some definitions of feature relationships in terms
f Rough Set theory from both the single feature granularity and feature
ubset granularity.

.1. Single feature granularity

Features in 𝐶 can be categorized into three disjoint groups, namely,
trong relevance, weak relevance and irrelevance (Wu et al., 2013).
rom the Rough Set perspective, we use the dependency degree 𝛾𝑓 (𝐷)

to measure the correlation between feature 𝑓 and decision class 𝐷. We
give the definition of feature significance as follows.

Definition 5 (Feature Significance). Given 𝐵 and 𝐷, 𝑓 ∉ 𝐵, the
significance of 𝑓 to 𝐵 on 𝐷 is defined as:

𝜎𝐷(𝑓, 𝐵) = 𝛾𝐵∪𝑓 (𝐷) − 𝛾𝐵(𝐷). (14)

where 𝛾𝐵∪𝑓 (𝐷) and 𝛾𝐵(𝐷) denote the dependency degrees of feature set

to 𝐷 with and without feature 𝑓 respectively.



Expert Systems With Applications 204 (2022) 117520P. Zhou et al.

∃

a

t
M
T

c
s

Definition 5 can measure the significance of a conditioned feature
𝑓 to a candidate feature subset 𝐵 in the context of decision feature
𝐷. Based on this, we give the definitions of strong relevance, weak
relevance, and irrelevance from the Rough Set perspective as follows.

Definition 6 (Strong Relevance, Weak Relevance, and Irrelevance (RS)).
Given 𝐶 and 𝐷, 𝑓 ∈ 𝐶,

(1) 𝑓 is strongly relevant to 𝐷 iff ∀𝑆 ⊆ 𝐶∖{𝑓} s.t. 𝜎𝐷(𝑓, 𝑆) > 0.
(2) 𝑓 is weakly relevant to 𝐷 iff it is not strongly relevant, and

𝑆 ⊂ 𝐶∖{𝑓} s.t. 𝜎𝐷(𝑓, 𝑆) > 0.
(3) 𝑓 is irrelevant to 𝐷 iff it is neither strongly nor weakly relevant,

nd ∀𝑆 ⊆ 𝐶∖{𝑓} s.t. 𝜎𝐷(𝑓, 𝑆) = 0.

We use the dataset MONK1 from UCI Machine Learning Repository
o illustrate the feature relationships from the Rough Set perspective.
ONK1 has 432 instances and six category features 𝐶 = {𝑎1, 𝑎2,… , 𝑎6}.
he target concept 𝐷 is defined by 𝐷 = (𝑎1 = 𝑎2) ∨ (𝑎5 = 1).

• Strongly relevant feature. We calculate the feature significance of
feature 𝑎5 to ∀𝑆 ⊆ 𝐶∖{𝑎5}. All the values are bigger than 0. We
list some of them as follows:
𝜎𝐷(𝑎5, {𝑎1}) = 0.2339; 𝜎𝐷(𝑎5, {𝑎1, 𝑎2}) = 0.6694; 𝜎𝐷(𝑎5, {𝑎1, 𝑎2, 𝑎3})
= 0.5565; 𝜎𝐷(𝑎5, {𝑎1, 𝑎2, 𝑎3, 𝑎4}) = 0.4032; 𝜎𝐷(𝑎5, {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6})
= 0.2661; According to Definition 6, for ∀𝑆 ⊆ 𝐶∖{𝑎5}, 𝜎𝐷(𝑎5, 𝑆) >
0. Thus, we can conclude that 𝑎5 is a strongly relevant feature
from the Rough Set perspective.

• Weakly relevant feature. For feature 𝑎1, we calculate the feature
significance of 𝑎1 to some 𝑆 ⊆ 𝐶∖{𝑎1} and list some of them as
follows:
𝜎𝐷(𝑎1, {𝑎3}) = 0; 𝜎𝐷(𝑎1, {𝑎3, 𝑎4}) = 0.0161; 𝜎𝐷(𝑎1, {𝑎6}) = 0;
𝜎𝐷(𝑎1, {𝑎2}) = 0.3306;
According to Definition 6, there exists 𝑆1 = {𝑎3} which satisfies
𝜎𝐷(𝑎1, 𝑆1) = 0. Thus, 𝑎1 is not a strongly relevant feature. Mean-
while, there exists 𝑆2 = {𝑎2} which satisfies 𝜎𝐷(𝑎1, 𝑆2) = 0.3306 >
0. Thus, we can conclude that 𝑎1 is a weakly relevant feature from
the Rough Set perspective.

• Irrelevant feature. For feature 𝑎6, the feature significance is 0.
𝜎𝐷(𝑎6, {𝑎1}) = 0; 𝜎𝐷(𝑎6, {𝑎1, 𝑎2}) = 0; 𝜎𝐷(𝑎6, {𝑎1, 𝑎2, 𝑎3}) = 0;
𝜎𝐷(𝑎6, {𝑎1, 𝑎2, 𝑎3, 𝑎4}) = 0; 𝜎𝐷(𝑎6, {𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5}) = 0; .... Thus,
𝑎6 is an irrelevant feature.

For streaming feature selection, the features flow in one by one over
time. At time stamp 𝑡, assume the new arriving feature is 𝑓𝑡 and the
selected feature subset is 𝑆𝑡−1. Once a streaming feature is discarded,
we cannot use it again. Thus, we cannot test ∀𝑆 ⊆ 𝐶∖{𝑓𝑡} during
streaming feature selection to check whether 𝑓𝑡 is strongly relevant to
𝐷. We refer to both strong relevant feature and weak relevant feature
as a relevant feature in the following.

Theorem 1. Given 𝐶 and 𝐷, at time stamp 𝑡, 𝑓𝑡 is the new arriving feature
and 𝑆𝑡−1 is the selected feature subset, 𝑓𝑡 is relevant to 𝐷 if 𝜎𝐷(𝑓𝑡, 𝑆𝑡−1) > 0.

Proof. Let 𝑆 = 𝑆𝑡−1. Because 𝜎𝐷(𝑓𝑡, 𝑆) = 𝜎𝐷(𝑓𝑡, 𝑆𝑡−1) > 0, therefore
∃𝑆 ⊂ 𝐶∖{𝑓𝑡}, 𝜎𝐷(𝑓, 𝑆) ≠ 0. Thus, 𝑓𝑡 is relevant to 𝐷.

In other words, if the feature significance of 𝑓𝑖 to 𝑆𝑡−1 is bigger than
0, 𝑓𝑖 is at least weakly relevant to 𝐷.

Theorem 2. Given 𝐶 and 𝐷, at time stamp 𝑡, 𝑓𝑡 is the new arriving feature
and 𝑆𝑡−1 is the selected feature subset, 𝑓𝑡 is not strongly relevant to 𝐷 if
𝜎𝐷(𝑓𝑡, 𝑆𝑡−1) = 0.

Proof. Suppose 𝑓𝑡 is strongly relevant to 𝐷, then ∀𝑆 ⊆ 𝐶∖{𝑓𝑡},
𝜎𝐷(𝑓𝑡, 𝑆) ≠ 0. Let 𝑆 = 𝑆𝑡−1 ⊆ 𝐶∖{𝑓𝑡}, 𝜎𝐷(𝑓𝑡, 𝑆) = 𝜎𝐷(𝑓𝑡, 𝑆𝑡−1) = 0.
Thus, 𝑓 is not strongly relevant to 𝐷.
5

𝑡 t
Thus, for a new arriving feature 𝑓𝑡, if the feature significance of 𝑓𝑖
to 𝑆𝑡−1 is 0, then we should consider to remove this feature.

Based on Markov blankets, Yu and Liu (2004) further divided
weakly relevant features into redundant and non-redundant features.
We give the definition of feature Redundancy from Rough Set perspec-
tive as follows:

Definition 7 (Redundancy (RS)). A feature 𝑓 ∈ 𝐶 is a redundant
feature if ∃𝑀 ⊆ 𝐶∖{𝑓} which makes ∀𝑓 ′ ∈ 𝐶∖(𝑀∪{𝑓}), 𝜎𝑓 (𝑓 ′,𝑀) = 0.

Unlike Mutual Information which computes the information be-
tween two features, such as 𝐼(𝑓 ;𝐷), we consider the new arriving
feature 𝑓𝑡, the selected feature subset 𝑆𝑡−1, and the target class 𝐷 as
an integral in terms of Rough Set theory. In other words, the relevancy
and redundancy between features 𝑓𝑡 and 𝐷 should be determined in
the context of the currently selected features subset 𝑆𝑡−1. If 𝜎𝐷(𝑓, 𝐵) =
𝛾𝐵∪𝑓 (𝐷) − 𝛾𝐵(𝐷) > 0, then we consider feature 𝑓𝑡 is relevant to 𝐷 in
the context of 𝑆𝑡−1. If 𝜎𝐷(𝑓, 𝐵) = 0, then we consider the feature 𝑓𝑡 is
redundant to 𝐷 in the context of 𝑆𝑡−1.

To sum up, for the new arriving feature 𝑓𝑡 and the selected feature
subset 𝑆𝑡−1, if 𝜎𝐷(𝑓𝑡, 𝑆𝑡−1) > 0, we can safely add 𝑓𝑡 into 𝑆𝑡−1. However,
because the maximal value of 𝛾 is 1, it is unrealistic that the significance
of all the features is bigger than 0 for high dimensional datasets. In
other words, it is unrealistic that each feature in a dataset can increase
the dependency degree of the candidate feature subset. Thus, there
must exist a lot of features 𝑓 which satisfies 𝜎𝐷(𝑓, 𝑆) = 0. Meanwhile,
the definition of Rough Set based redundancy (Definition 7) is difficult
to apply in the case that we cannot test all the subsets to find 𝑀 . Thus,
we need to consider the streaming feature selection at the feature subset
granularity at the same time.

4.2. Feature subset granularity

Rough Set based methods have a huge advantage that it can calcu-
late both the dependency degree of a single feature and the dependency
degree of a candidate feature set.

Definition 8 (Subset Dependency). The dependency of selected feature
subset 𝑆𝑡 to 𝐷 is defined as:

𝐷𝑒𝑝(𝑆𝑡, 𝐷) = 𝛾𝑆𝑡 (𝐷). (15)

From the Rough Set perspective, feature selection aims to select the
target features with the maximal dependency degree. Thus, the prob-
lem of Rough Set based streaming feature selection can be generally
formulated as

𝑀𝑎𝑥𝑆𝑡 {𝐷𝑒𝑝(𝑆𝑡, 𝐷)} (16)

Based on this, we propose a baseline algorithm of Rough Set based
streaming feature selection as follows.

Algorithm 1: Rough Set Based Streaming Feature Selection
Baseline Algorithm (RS-SFS-BA)

Input: Streaming feature 𝑓𝑡 at time stamp 𝑡;
Output: Selected feature subset 𝑆.

1 Initialize the selected feature set 𝑆 to {};
2 while 𝑓𝑡 is not empty do
3 if the dependence degree of 𝑆 ∪ 𝑓𝑡 bigger than the dependence degree

of 𝑆 then
4 add 𝑓𝑡 into 𝑆;
5 end
6 end

At timestamp 𝑡, if the new arriving feature 𝑓𝑡 makes 𝛾𝑆∪𝑓𝑡 (𝐷) in-
rease, 𝑓𝑡 will be selected. However, for RS-SFS-BA, once feature 𝑓𝑡 is
elected, it will not be removed. Thus, we need more evaluation criteria
o measure the quality of selected feature subset (Maji & Paul, 2011).
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Definition 9 (Subset Significance). The significance of selected feature
ubset 𝑆𝑡 to 𝐷 is defined as:

𝑖𝑔(𝑆𝑡, 𝐷) = 1
|𝑆𝑡

|

∑

𝑓𝑖∈𝑆𝑡
𝜎𝐷(𝑓𝑖, 𝑆𝑡∖{𝑓𝑖}). (17)

Besides the maximization of 𝐷𝑒𝑝(𝑆𝑡, 𝐷), we can maximize 𝑆𝑖𝑔(𝑆𝑡, 𝐷)
to make each feature in 𝑆 is significant to the selected feature subset.

Theorem 3 (Jensen & Shen, 2008). Suppose 𝐵 is a subset of conditional
features, 𝑓 is an arbitrary conditional attribute that belongs to the dataset,
and 𝐷 is the set of decision attributes. Then 𝛾𝐵∪𝑓 (𝐷) ≥ 𝛾𝐵(𝐷).

Proof. The proof of this theorem is available in Jensen and Shen (2008)
on page 90.

Theorem 4. Suppose 𝜎𝐷(𝑓 ′, 𝑆𝑡∖{𝑓 ′}) = 0, 𝑓 ′ ∈ 𝑆𝑡. If we remove 𝑓 ′ from
𝑆𝑡, the subset significance of the candidate feature subset will increase.

Proof. Let |𝑆𝑡
| = 𝑚′ which consists of 𝑚′ different features, 𝑆∗ =

𝑆𝑡∖{𝑓 ′}. Because 𝜎𝐷(𝑓 ′, 𝑆𝑡∖{𝑓 ′}) = 0, therefore 𝜎𝐷(𝑓 ′, 𝑆𝑡∖{𝑓 ′}) =
𝛾𝑆𝑡 (𝐷) − 𝛾𝑆𝑡∖{𝑓 ′}(𝐷) = 0, 𝛾𝑆𝑡 (𝐷) = 𝛾𝑆𝑡∖{𝑓 ′}(𝐷).

According to Theorem 3, for ∀𝑓𝑖 ∈ 𝑆𝑡, 𝑓𝑖 ≠ 𝑓 ′, 𝛾𝑆𝑡∖{𝑓𝑖}(𝐷) ≥
𝛾𝑆𝑡∖{𝑓𝑖 ,𝑓 ′}(𝐷). Therefore, 𝑆𝑖𝑔(𝑆𝑡, 𝐷) = 1

|𝑆𝑡
|

∑

𝑓𝑖∈𝑆𝑡
𝜎𝐷(𝑓𝑖, 𝑆𝑡∖{𝑓𝑖})

1
𝑚′ (𝛾𝑆𝑡 (𝐷)−𝛾𝑆𝑡∖{𝑓1}(𝐷)+𝛾𝑆𝑡 (𝐷)−𝛾𝑆𝑡∖{𝑓2}(𝐷)+⋯+𝛾𝑆𝑡 (𝐷)−𝛾𝑆𝑡∖{𝑓 ′}(𝐷)+

⋯ + 𝛾𝑆𝑡 (𝐷) − 𝛾𝑆𝑡∖{𝑓𝑚′ }
(𝐷))

≤ 1
𝑚′ (𝛾𝑆𝑡∖{𝑓 ′}(𝐷) − 𝛾𝑆𝑡∖{𝑓1 ,𝑓 ′}(𝐷) + 𝛾𝑆𝑡∖{𝑓 ′}(𝐷) − 𝛾𝑆𝑡∖{𝑓2 ,𝑓 ′}(𝐷) + ⋯ +

𝑆𝑡∖{𝑓 ′}(𝐷) − 𝛾𝑆𝑡∖{𝑓𝑚′ ,𝑓 ′}(𝐷))
= 1

𝑚′ (𝛾𝑆∗ (𝐷) − 𝛾𝑆∗∖{𝑓1}(𝐷) + 𝛾𝑆∗ (𝐷) − 𝛾𝑆∗∖{𝑓2}(𝐷) + ⋯ + 𝛾𝑆∗ (𝐷) −
𝛾𝑆∗∖{𝑓𝑚′ }

(𝐷))
= 𝑚′−1

𝑚′ 𝑆𝑖𝑔(𝑆∗, 𝐷), 𝑆𝑖𝑔(𝑆𝑡, 𝐷) < 𝑆𝑖𝑔(𝑆∗, 𝐷).
Thus, the significance of the candidate feature subset will increase

f we remove 𝑓 ′ from 𝑆𝑡.

As we know, Rough Set based methods usually have a high time
omplexity due to the calculation of dependency degree. For high-
imensional real-world datasets, there are a huge number of irrelevant
nd redundancy features. Thus, to reduce the running time, we can
iscard the irrelevant and low relevance features in advance.

A simple idea for filtering new arriving features is to specify a
hreshold 𝛼. For feature 𝑓𝑡, if 𝛾𝑓𝑡 (𝐷) < 𝛼, it will be discarded directly
or saving time. However, it is difficult to specify a proper value for all
ifferent datasets.

efinition 10 (Subset Correlation). The correlation of selected feature
ubset 𝑆𝑡 to 𝐷 is defined as:

𝑜𝑟(𝑆𝑡, 𝐷) = 1
|𝑆𝑡

|

∑

𝑓𝑖∈𝑆𝑡
𝛾𝑓𝑖 (𝐷). (18)

During streaming feature selection, the value of 𝐶𝑜𝑟(𝑆𝑡, 𝐷) can
automatically adjust in terms of the selected features. Thus, it can be a
good threshold for feature filtering.

5. Rough set based streaming feature selection framework

In this section, we give a formal definition in the online streaming
feature selection problem at first. Inspired by the challenges of the
streaming feature selection issue, we proposed a generalized streaming
feature selection framework, which consists of three main components
including: (1) irrelevant feature discarding; (2) relevant feature select-
ing; and (3) nonsignificant feature removing, as shown in Fig. 1. In
terms of Rough Set theory, we derived a novel assembly Rough Set
based streaming feature selection framework, named RS-SFSF. Besides,
we analyze the relationship between RS-SFSF and some existing Rough
6

Set based streaming feature selection methods.
5.1. Definition of online streaming feature selection problem

Let 𝐷 ∈ 𝑅𝑛×1 be the initialized decision class label, and {𝑓𝑡 ∈
𝑅𝑛×1

|𝑡 = 1,… , 𝑚} be a sequence of input features with fixed number of
instances 𝑛. Suppose ℎ is a mapping function from samples to class, and
𝑡 is the current timestamp. For streaming feature selection, we cannot
know the information about the entire feature space in advance. At
each timestamp 𝑡, with the new arriving feature 𝑓𝑡, the problem of
streaming feature selection is to find the feature subset 𝑆𝑡 that can
maximize the mapping function ℎ𝑡 as:

𝑀𝑎𝑥𝑆𝑡 {ℎ𝑡 ∶ 𝑆𝑡 → 𝐷} (19)

according to certain measurements.

Algorithm 2: A General Streaming Feature Selection Frame-
work(SFSF)

Input: Streaming feature 𝑓𝑡 at time stamp 𝑡;
Output: Selected feature subset 𝑆.

1 Initialize the selected feature set 𝑆 to {};
2 while 𝑓𝑡 is not empty do
3 //Irrelevant Feature Discarding
4 if 𝑓𝑡 can be discarded directly then
5 discard 𝑓𝑡;
6 end
7 else
8 //Relevant Feature Selecting
9 if 𝑓𝑡 is a relevant feature then
10 add 𝑓𝑡 into 𝑆;
11 //Non-significant Feature Removing
12 if some feature 𝑓 ′ in 𝑆 is nonsignificant then
13 remove 𝑓 ′;
14 end
15 end
16 end
17 end

5.2. A general streaming feature selection framework

Inspired by the challenges of the streaming feature selection and
the flow chart as shown in Fig. 1, we proposed a generalized streaming
feature selection framework, named SFSF, as shown in Algorithm 2.
SFSF consists of three main components:

• Irrelevant Feature Discarding: When a new streaming feature 𝑓𝑡
arriving at time stamp 𝑡, the feature filtering component checks
whether 𝑓𝑡 is irrelevant or contains very little information about
the decision attribute. If true, 𝑓𝑡 will be discarded directly.

• Relevant Feature Selecting: If 𝑓𝑡 is a relevant feature to the
decision attribute, 𝑓𝑡 will be selected.

• Non-significant Feature Removing: If the selecting of 𝑓𝑡 makes
some features in the candidate feature subset 𝑆 redundancy or
nonsignificance, the redundant and non-significant features will
be removed.

.3. Rough set based streaming feature selection framework

Based on the SFSF framework and definitions of feature relationship
rom Rough Set perspective, we propose a novel general assembly
ough Set based streaming feature selection framework, named RS-
FSF, which aims to assemble new algorithms for the target streaming
eature selection problems, as shown in Fig. 2. RS-SFSF consists of five
ain steps:

• Step 1: Assemble feature relationship calculation method. A vi-
tal issue of RS-SFSF is the calculation of relationships between
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features. According to the definitions of feature relationship from
the Rough Set perspective, the core of judging the relationship
between features is the calculation of feature dependency. We
abstract the dependency calculation from three levels: Rough Set
model, positive region, and consistency calculation. Algorithm
3 shows a generalized dependency degree calculation method.
Specifically, for different datasets, we should choose different
Rough Set models at first. For discrete data, we can choose the
classical Rough Set model. For continuous data, we can choose
the neighborhood Rough Set model. For mixed data, the fuzzy
Rough Set model is more suitable. Second, for different Rough Set
models, the specific positive region calculation may be different.
For example, in the k-nearest neighborhood Rough Set model,
the 𝑃𝑂𝑆𝐵(𝐷) is the 𝑘 nearest samples for the target object. The
final dependency degree for the condition feature subset 𝐵 to
decision classes 𝐷 is the sum of each samples’ positive region
CARD value. For each 𝑥𝑖 ∈ 𝑈 , we can use different methods to
calculate the CARD value of the positive region. Table 2 summa-
rizes some common used CARD functions. Finally, we assemble
the selected model, the designed dependency calculation method,
and the CARD function into the feature relationship calculation
component.

• Step 2: Design feature filtering strategy. The feature filtering com-
ponent aims to discard irrelevant features directly. In practice,
we compare the dependency degree of the new arrival feature
with a threshold to determine whether it should be discarded.
There are two commonly used strategies: (1) a predefined fixed
threshold; (2) a dynamically changing threshold, such as the
average dependency degrees of the selected features.

• Step 3: Design feature relevant selection strategy. The feature-
relevant selecting component aims to select the features that
relevant to the decision class. Because the Rough Set model
can measure the dependency degree of a feature subset as inte-
gral, the most commonly used strategy is to check the relevance
via whether adding the new arriving feature can increase the
dependency degree of the selected feature subset.

• Step 4: Design non-significant removing strategy. When the
feature-relevant selection component adds a new feature into the
candidate feature subset, the nonsignificant removing component
will check whether some selected features can be removed. Ac-
cording to Definition 5, for each feature in the selected feature
subset, if the feature significance is zero, it will be removed as a
nonsignificant feature.

• Step 5: Assemble all these components and strategies into the
target new algorithm.

Algorithm 3: Dependency Degree Calculation Method
Input: the condition feature subset:𝐵; the decision classes:𝐷; Rough

Set model:𝑀 ;
Output: dependency degree on feature set 𝐵:𝛾𝐵 ;

1 𝑛: the number of instances in 𝑈 ;
2 find the positive region as 𝑃𝑂𝑆𝐵(𝐷) in terms of 𝑀 ;
3 calculate the value of 𝑃𝑂𝑆𝐵(𝐷) as 𝐶𝐴𝑅𝐷(𝑃𝑂𝑆𝐵(𝐷));
4 𝛾𝐵 = 𝐶𝐴𝑅𝐷(𝑃𝑂𝑆𝐵(𝐷))∕𝑛;

To sum up, in terms of Rough Set theory, we can combine different
ependency calculation methods and CARD calculation functions in
ifferent Rough Set models (classical Rough Set, neighborhood Rough
et, fuzzy Rough Set, Etc.) to assemble the feature relationship cal-
ulation component. Meanwhile, within the RS-SFSF framework, we
an design different strategies to construct a new streaming feature
7

election algorithm for the specific application problem.
Table 2
Two common used CARD functions.

Card_Weight Assume 𝑁𝑢𝑚𝑃 is the number of samples in 𝑃𝑂𝑆𝐵 (𝐷)
which have the same class as 𝑥𝑖, and 𝑁𝑢𝑚𝑆 is the
size of set 𝑃𝑂𝑆𝐵 (𝐷), 𝐶𝑎𝑟𝑑(𝑃𝑂𝑆𝐵 (𝐷)) = 𝑁𝑢𝑚𝑝

𝑁𝑢𝑚𝑆
.

Card_Consistency If all the classes of samples in 𝑃𝑂𝑆𝐵 (𝐷) are the same
as the class of 𝑥𝑖, then 𝐶𝑎𝑟𝑑(𝑃𝑂𝑆𝐵 (𝐷)) = 1; else
𝐶𝑎𝑟𝑑(𝑃𝑂𝑆𝐵 (𝐷)) = 0.

5.4. Derived algorithms from RS-SFSF framework

In this section, we introduce four derived algorithms from the RS-
SFSF framework with the classical Rough Set model, Neighborhood
Rough Set model (𝛿 neighborhood relation, and k-nearest neighborhood
relation), and Fuzzy Rough Set model, named CRS-SFSF, NRS-SFSF(𝛿),

RS-SFSF(𝑘), and FRS-SFSF. All of these four derived algorithms have
he same three components as the RS-SFSF framework. The differ-
nce between these algorithms lies in the different implementations of
eature relationship calculation component and different strategies.

Suppose the new arriving feature is 𝑓𝑡 at timestamp 𝑡, the decision
class is 𝐷, the selected feature subset is 𝑆 and 𝑓 ′ is a feature in 𝑆.
or FRS-SFSF, we use Eq. (8) as the similarity function. Meanwhile, we
hoose the Lukasiewicz t-norm 𝑚𝑎𝑥(𝑥 + 𝑦 − 1, 0) and the Lukasiewicz
uzzy implicator 𝑚𝑖𝑛(1 − 𝑥 + 𝑦, 1) as 𝑇 and 𝐼 in Eq. (13) and Eq. (12).

is a predefined threshold for non-significant feature removing. The
etails of these four algorithms shown as Table 3. Based on Algorithm
and Algorithm 2, we can easily construct these four algorithms.

.5. Time complexity of RS-SFSF

The time complexity of the RS-SFSF framework mainly depends on
he time complexity of the dependency degree calculation function.
uppose the time complexity of the dependency degree calculation
unction is 𝑂(𝐷𝑒𝑝).

In the RS-SFSF framework, the feature filtering component’s time
omplexity is 𝑂(𝐷𝑒𝑝). The time complexity of the relevant feature
electing component is 𝑂(𝐷𝑒𝑝) too. For the nonsignificant feature re-
oving component, the time complexity is 𝑂(𝐷𝑒𝑝 ∗ |𝑆|) where |𝑆|
enotes the number of selected features. Thus, the time complexity of
S-SFSF is 𝑂(𝐷𝑒𝑝 ∗ |𝑆| ∗ 𝑚).

For 𝑂(𝐷𝑒𝑝), the time complexity of the classical Rough Set model
s usually 𝑂(𝑛). For the neighborhood Rough Set model, the time
omplexity is usually 𝑂(𝑛2). For the fuzzy Rough Set model, the time
omplexity is usually 𝑂(𝑛2) too. Thus, the time complexity of RS-SFSF
s between 𝑂(𝑛 ∗ |𝑆| ∗ 𝑚) and 𝑂(𝑛2 ∗ |𝑆| ∗ 𝑚).

When the algorithm selects all the candidate features, the worst
ime complexity of RS-SFSF is 𝑂(𝑛2 ∗ 𝑚2). However, it is impossible
o select all the condition features for real-world datasets. Meanwhile,
he feature filtering component in RS-SFSF will significantly reduce the
untime. Experiments in Section 5 reveal that RS-SFSF based algorithms
re much faster than the baseline. Thus, the time complexity will be
uch smaller for real-world applications.

.6. Comparing with other rough set based streaming feature selection
ethods

In this section, we discuss the relationships between the proposed
ramework and several Rough Set based streaming feature selection
lgorithms, including OS-NRRSARA-SA (Eskandari & Javidi, 2016),
-OFSD (Zhou et al., 2017), OFS-A3M (Zhou et al., 2019b), and OFS-
ensity (Zhou et al., 2019a). We summarize six aspects including:
ough Set Model, Dependency Function, Card Function, Feature Fil-

ering Component, Relevant Selecting Component, and Nonsignificant
emoving Component. Details can be seen from Table 4.

From Table 4, we can observe the followings.
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Table 3
Four derived algorithms based on RS-SFSF framework.

RS-SFSF Framework CRS-SFSF NRS-SFSF(𝛿) NRS-SFSF(𝑘) FRS-SFSF

Rough Set Model Classical Rough Set Neighborhood Rough Set Neighborhood Rough Set Fuzzy Rough Set

Positive region Equivalence Relation 𝛿 Neighborhood Relation 𝑘-nearest Neighborhood
Relation

Fuzzy Equivalence Relation

Card Function Card_Weight Card_Weight Card_Weight Card_Weight

Feature Filtering if 𝛾𝑓𝑡 (𝐷) = 0, discard 𝑓𝑡 if 𝛾𝑓𝑡 (𝐷) ≤ 𝐶𝑜𝑟(𝑆,𝐷), discard
𝑓𝑡

if 𝛾𝑓𝑡 (𝐷) ≤ 𝐶𝑜𝑟(𝑆,𝐷), discard
𝑓𝑡

if 𝛾𝑓𝑡 (𝐷) ≤ 𝐶𝑜𝑟(𝑆,𝐷), discard
𝑓𝑡

Relevant Selecting if 𝛾{𝑓𝑡}∪𝑆 > 𝛾𝑆 , select 𝑓𝑡 if 𝛾{𝑓𝑡}∪𝑆 > 𝛾𝑆 , select 𝑓𝑡 if 𝛾{𝑓𝑡}∪𝑆 > 𝛾𝑆 , select 𝑓𝑡 if 𝛾{𝑓𝑡}∪𝑆 > 𝛾𝑆 , select 𝑓𝑡
Nonsignificant
Removing

if 𝜎𝐷(𝑓 ′ , 𝑆∖{𝑓 ′}) = 0, remove
𝑓 ′

if 𝜎𝐷(𝑓 ′ , 𝑆∖{𝑓 ′}) = 0, remove
𝑓 ′

if 𝜎𝐷(𝑓 ′ , 𝑆∖{𝑓 ′}) = 0, remove
𝑓 ′

if 𝛾{𝑓𝑡 }∪𝑆−𝛾𝑆
𝛾𝑆

< 𝛼 and
𝜎𝐷(𝑓 ′ , 𝑆∖{𝑓 ′}) = 0, remove 𝑓 ′
Table 4
RS-SFSF vs. other rough set based algorithms.

RS-SFSF Framework OS-NRRSARA-SA K-OFSD OFS-A3M OFS-Density

Rough Set Model Classical Rough Set Neighborhood Rough Set Neighborhood Rough Set Neighborhood Rough Set

Dependency Function Classical Dependency
Calculation

Dep_K (k-nearest
neighborhood relation)

Dep_Adapted (Gap
neighborhood relation)

Dependency_Density (Density
neighborhood relation)

Card Function Card_Weight Card_Imbalanced Card_Weight Card_Weight

Feature Filtering none compared with a pre-defined
parameter(𝛼)

maximal 𝐶𝑜𝑟(𝑆 𝑡 , 𝐷) maximal 𝐶𝑜𝑟(𝑆 𝑡 , 𝐷)

Relevant Selecting maximal 𝐷𝑒𝑝(𝑆 𝑡 , 𝐷) OR noise
resistant dependency > 0

maximal 𝐷𝑒𝑝(𝑆 𝑡 , 𝐷) OR
maximal signal feature
dependency

maximal 𝐷𝑒𝑝(𝑆 𝑡 , 𝐷) maximal 𝐷𝑒𝑝(𝑆 𝑡 , 𝐷)

Nonsignificant
Removing

maximal 𝑆𝑖𝑔(𝑆 𝑡 , 𝐷) none maximal 𝑆𝑖𝑔(𝑆 𝑡 , 𝐷) maximal 𝑆𝑖𝑔(𝑆 𝑡 , 𝐷)
• OS-NRRSARA-SA: OS-NRRSARA-SA was a classical Rough Set
based method that can only deal with categorical data directly.
There is no feature filtering component for OS-NRRSARA-SA. OS-
NRRSARA-SA did not consider the high correlation of the selected
feature subset. Thus, there is no guarantee that every feature in
𝑆 is highly correlated.

• K-OFSD: K-OFSD was a Neighborhood Rough Set based method
that is designed for high dimensional class-imbalanced data. K-
OFSD was based on k-nearest neighborhood relation and designed
the Card_Imbalanced function for class-imbalanced data. How-
ever, K-OFSD did not have the nonsignificant feature removing
component. Thus, there is no guarantee that the features in the
selected feature subset are non-redundant.

• OFS-A3M: OFS-A3M was a nonparametric method based on
Neighborhood Rough Set. In the feature filtering step, OFS-
A3M uses the subset correlation constraint to select high related
features. OFS-A3M proposed a new Gap neighborhood relation,
making the algorithm need not specify any parameters before
learning.

• OFS-Density: OFS-Density was a novel streaming feature selection
method based on the Density neighborhood relation. OFS-Density
discarded the features whose dependency degree is less than
the candidate feature subset correlation in the feature filtering
step. Considering the equal constraint (the dependency degree
of adding a new feature into the selected feature subset equals
the dependency degree of originally selected feature subset) is
too strict for real-world datasets, OFS-Density used a fuzzy equal
constraint for nonsignificant feature analysis.

Meanwhile, the worst time complexity of OS-NRRSARA-SA, K-
OFSD, OFS-A3M, and OFS-Density is 𝑂(2𝑚 ∗ 𝑚 ∗ 𝑛2), 𝑂(𝑚 ∗ 𝑛2),
𝑂(𝑚2 ∗ 𝑛2 ∗ 𝑙𝑜𝑔𝑛), and 𝑂(𝑚2 ∗ 𝑛2 ∗ 𝑙𝑜𝑔𝑛) respectively. For K-OFSD,
it has the minimal worst-case time complexity, for it does not have the
nonsignificant feature removing component.

In general, all these Rough Set based algorithms mentioned above
can be included in our new general framework. Thus, RS-SFSF is
flexible and versatile.
8

6. Experiments

6.1. Experimental setup

In this section, we apply the proposed algorithms on twelve real-
world datasets from cDNA microarray and NIPS 2003, as shown in
Table 5.

We use three Matlab build-in classifiers: KNN(k=3), SVM(with the
linear kernel), and CART to evaluate a selected feature subset in our
experiments. We perform 5-fold cross-validation on each dataset, and
all competing algorithms use the same training and testing data for
each fold. The order of streaming features is random, and we run
ten times for each dataset. All experimental results are conducted on
a PC with AMD(R) 3700X, 3.6 GHz CPU, and 32 GB memory. We
conduct the Friedman test at a 95% significance level to validate
whether these competing algorithms have a significant difference and
use the Nemenyi test as a post-hoc test (Demšar, 2006). Besides, the
win/tie/loss (W/T/L for short) counts are summarized in the statistical
performance.

6.2. RS-SFSF with classical rough set model

For the classical Rough Set, the model cannot handle continuous
data directly. We discretize the features of datasets in Table 5 into five
equal intervals. We compare CRS-SFSF with OS-NRRSARA-SA (Eskan-
dari & Javidi, 2016), GFSSF (Li et al., 2013), and the baseline Algorithm
RS-SFS-BA with the classical Rough Set model (denotes as ‘‘CRS-BASE’’)
on these datasets.

The predictive accuracy, running time, and the mean number of
selected features are shown as Figs. 3 and 4. The running time of
OS-NRRSARA-SA on datasets 2, 8, 9, and 12 are 117.8, 154.6, 183.8,
and 149.7, respectively. The p-values of Friedman test on KNN, SVM
and CART are 5.4095e−07, 3.5947e−10 and 1.3487e−04 respectively.
Thus, there is a significant difference in predictive accuracy in cases
of KNN, SVM, and CART. The p-values on running time and the mean
number of selected features are 2.5934e−10 and 2.2029e−15. Thus,
there is a significant difference in running time and the mean number
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Table 5
Real-world Datasets.

Index Dataset Instances/Features Feature characteristics Classes

1 Leukemia 72/7,129 Real 2
2 LungCancer 181/12,533 Real 2
3 Colon 62/2,000 Real 2
4 Lymphoma 62/4,026 Real 3
5 Prostate 102/6,033 Real 2
6 Srbct 63/2,308 Real 4
7 Dlbcl 77/7,129 Integer 2
8 Breast 97/24,481 Real 2
9 Ovarian 253/15,154 Real 2
10 Leukemia(3c) 72/7,129 Integer 3
11 Leukemia(4c) 72/7,129 Integer 4
12 Arcene 200/10,000 Integer 2
Fig. 3. CRS-SFSF vs. competing algorithms in cases of KNN, SVM and CART.
Fig. 4. CRS-SFSF vs. competing algorithms on running time and mean number of selected features.
f selected features. According to the Nemenyi test, the value of CD
critical difference) is 1.3528 in Table 6.

From Fig. 3, Fig. 4 and Table 6, we can observe that:

• CRS-SFSF gets the best performance in cases of KNN, SVM, and
CART on predictive accuracy. Meanwhile, CRS-SFSF is signifi-
cantly better than CRS-BASE and GFSSF, according to the Ne-
menyi test. Besides, CRS-SFSF gets a higher predictive accuracy
than OS-NRRSARA-SA on most of these datasets. This indicates
the effectiveness of our proposed framework.

• On the running time, CRS-SFSF gets the minimum average value.
Meanwhile, CRS-SFSF is significantly faster than OS-NRRSARA-
SA. For some high-dimensional datasets, such as Breast and Ovar-
ian, CRS-SFSF is much faster than ‘‘BASE’’ and OS-NRRSARA-SA.
The saving time comes from the feature filtering component in
CRS-SFSF. However, for some datasets, such as Lymphoma and
Dlbcl, CRS-SFSF spends much more time than ‘‘BASE’’. The extra
9

time is caused by the nonsignificant feature removing component
in CRS-SFSF, aiming to select a compact feature subset.

• On the mean number of selected features, CRS-SFSF selects the
fewest features on average among all these competing algorithms.
CRS-SFSF gets a higher predictive accuracy than the competing al-
gorithms with fewer features. This fully confirms the effectiveness
of our new framework.

To sum up, in terms of our RS-SFSF framework, the new classical
Rough Set based algorithm CRS-SFSF performs better than the com-
pared algorithms on predictive accuracy with fewer selected features.

6.3. RS-SFSF with neighborhood rough set model

We can derive two new neighborhood Rough Set based algorithms
within the RS-SFSF framework in terms of 𝛿 neighborhood relation and
k-nearest neighborhood relation. For parameter 𝑘, we test the values of
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Table 6
The statistical performance of CRS-SFSF vs. compared algorithms.

CRS-SFSF CRS-BASE OS-SA GFSSF

KNN
W/T/L 9/0/3 1/0/11 2/0/10 0/0/12
AVG. 0.7629 0.6707 0.7087 0.6160
AVG. RANKS 1.3333 2.9583 2.0833 3.6250

SVM
W/T/L 7/0/5 2/0/10 3/0/9 0/0/12
AVG. 0.7766 0.7152 0.7273 0.6377
AVG. RANKS 1.0 3.4583 2.3333 3.2083

CART
W/T/L 9/0/3 0/0/12 2/0/10 1/0/11
AVG. 0.7455 0.6573 0.7089 0.6011
AVG. RANKS 1.4167 2.9167 2.2500 3.4167

Running time
W/T/L 5/0/7 0/0/12 0/0/12 7/0/5
AVG. 3.6 6.6 70.5 4.2
AVG. RANKS 1.8333 2.6667 4.0 1.5

Selected features AVG. 3.1 5.4 4.2 4.6
AVG. RANKS 1.0833 4.0 2.2500 2.6667
Fig. 5. KNN, SVM and CART Predictive accuracy varying with different k.
Fig. 6. KNN, SVM and CART Predictive accuracy varying with different 𝛿.
d
m
v

= (3, 5, 7, 9, 11) on these datasets as shown in Fig. 5. For parameter
, we test the values of 𝛿 = (0.1, 0.2, 0.3, 0.4, 0.5) ∗ 𝑀𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠 on these
atasets as shown in Fig. 6, where 𝑀𝑎𝑥𝑟𝑎𝑑𝑖𝑢𝑠 denotes the maximum
adius of the target object.

From Figs. 5 and 6, we can observe that the 𝛿 Neighborhood Rough
et model is more sensitive to parameter values than the k-nearest
eighborhood Rough Set model due to imbalanced sample distribu-

ion. Meanwhile, the algorithm with k-nearest neighborhood relation
erforms better than the algorithm with 𝛿 neighborhood relation on
verage. Thus, in the next experiments, we use NRS-SFSF(k) to compare
ith the competing streaming feature selection algorithms. Meanwhile,
e set 𝑘 = 7 in our experiments with the best performance on average.

We compare NRS-SFSF(k) with OSFS (Wu et al., 2013), SAOLA (Yu
t al., 2016), OSFSMI (Rahmaninia & Moradi, 2018), OFS-A3M (Zhou
t al., 2019b), OFS-Density (Zhou et al., 2019a) and the baseline
lgorithm RS-SFS-BA using the neighborhood Rough Set model on

hese datasets (denotes as NRS-BASE(k)). We specify the same values of
for NRS-BASE(k) as NRS-SFSF(k). Meanwhile, the significance level
is set to 0.01 for OSFS and SAOLA.
10
Tables 7–11 summarize the predictive accuracy, running time, and
the mean number of selected features of these competing algorithms.
The p-values of the Friedman test on KNN, SVM, and CART are 0.3917,
0.4441, and 0.2910, respectively. Thus, there is no significant differ-
ence among these competing algorithms on predictive accuracy. The
p-values of running time and the mean number of selected features are
3.3810e−09 and 5.6570e−18, respectively. Thus, there is a significant
ifference among these competing algorithms on running time and the
ean number of selected features. According to the Nemenyi test, the

alue of CD (critical difference) is 2.6004.
From Tables 7–11, we have the following observations.

• On the predictive accuracy, there is no significant difference
among all these competing algorithms. NRS-SFSF(k) gets the best
performance with both KNN and CART. In the case of SVM,
NRS-BASE(k) gets the best performance, and NRS-SFSF(k) just
performs a little worse than it. The main reason is that SVM is
robust to the number of selected features and tends to perform
better with more features. Meanwhile, in Table 11, we can see

that NRS-BASE(k) selects five more times features on average than
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Table 7
NRS-SFSF vs. competing algorithms in case of KNN.

Dataset NRS-SFSF(k) NRS-BASE(k) OSFS SAOLA OFS-A3M OFS-Density OSFSMI

Leukemia 0.9357 0.9286 0.8857 0.9214 0.9357 0.9214 0.9571
LungCancer 0.9833 0.9806 0.9806 0.9833 0.9833 0.9889 0.9611
Colon 0.775 0.825 0.8 0.75 0.7917 0.7333 0.8
Lymphoma 0.9333 0.9833 0.95 0.95 0.8917 0.95 0.925
Prostate 0.91 0.895 0.9 0.9 0.9 0.87 0.915
Srbct 0.9573 0.9448 0.9266 0.8944 0.721 0.8406 0.8035
Dlbcl 0.9067 0.8533 0.8867 0.8333 0.78 0.8867 0.7933
Breast 0.6368 0.6 0.6105 0.5579 0.6579 0.5947 0.6421
Ovarian 0.998 0.9941 0.9941 0.9961 1 0.9961 0.9784
Leukemia(3c) 0.9143 0.8571 0.8929 0.9286 0.85 0.9214 0.8571
Leukemia(4c) 0.8786 0.8286 0.8286 0.8643 0.8643 0.8214 0.75
Arcene 0.805 0.695 0.73 0.755 0.66 0.66 0.74

W/T/L 4/0/8 1/0/11 0/0/12 1/0/11 2/0/10 1/0/11 3/0/9
AVG. 0.8861 0.8654 0.8654 0.8611 0.8363 0.8487 0.8435
AVG. RANKS 2.4583 4.0833 4.1250 3.8750 4.3750 4.5833 4.5000
Table 8
NRS-SFSF vs. competing algorithms in case of SVM.

Dataset NRS-SFSF(k) NRS-BASE(k) OSFS SAOLA OFS-A3M OFS-Density OSFSMI

Leukemia 0.9571 0.9357 0.9 0.9143 0.9429 0.95 0.9429
LungCancer 0.9806 0.9833 0.9778 0.9778 0.975 0.9889 0.9778
Colon 0.8083 0.7917 0.8 0.7917 0.8 0.8167 0.8083
Lymphoma 0.9333 0.9917 0.9667 0.9333 0.8917 0.9417 0.875
Prostate 0.885 0.905 0.9 0.92 0.895 0.875 0.915
Srbct 0.951 0.9448 0.9161 0.8867 0.7273 0.8189 0.7867
Dlbcl 0.9 0.9267 0.9067 0.8533 0.7933 0.8867 0.8067
Breast 0.6421 0.5895 0.5632 0.5526 0.6947 0.6316 0.6263
Ovarian 0.996 1 0.9941 0.998 1 0.9922 0.9803
Leukemia(3c) 0.9 0.9 0.8786 0.9143 0.8286 0.9143 0.8429
Leukemia(4c) 0.85 0.8571 0.8429 0.8357 0.85 0.8429 0.7643
Arcene 0.685 0.71 0.76 0.715 0.71 0.665 0.745

W/T/L 2/0/10 3/1/8 1/0/11 1/0/11 1/1/10 3/0/9 0/0/12
AVG. 0.8740 0.8779 0.8671 0.8577 0.8423 0.8603 0.8392
AVG. RANKS 3.2500 3.0 4.0833 4.3750 4.7083 3.7500 4.83333
Table 9
NRS-SFSF vs. competing algorithms in case of CART.

Dataset NRS-SFSF(k) NRS-BASE(k) OSFS SAOLA OFS-A3M OFS-Density OSFSMI

Leukemia 0.85 0.8 0.8286 0.85 0.9429 0.9071 0.9214
LungCancer 0.95 0.9417 0.9361 0.9472 0.9389 0.9278 0.9472
Colon 0.7333 0.725 0.7417 0.7667 0.7417 0.775 0.7917
Lymphoma 0.9083 0.8083 0.9083 0.875 0.875 0.8417 0.85
Prostate 0.87 0.835 0.83 0.88 0.88 0.84 0.885
Srbct 0.8175 0.7944 0.8818 0.8392 0.7427 0.8161 0.8098
Dlbcl 0.86 0.82 0.8333 0.82 0.8133 0.8667 0.8133
Breast 0.5474 0.5632 0.5579 0.4895 0.6263 0.6158 0.5474
Ovarian 0.9781 0.9586 0.9682 0.9824 0.9804 0.9686 0.9606
Leukemia(3c) 0.8357 0.85 0.85 0.9 0.8143 0.8143 0.8429
Leukemia(4c) 0.8786 0.8 0.7571 0.8214 0.8214 0.8357 0.75
Arcene 0.765 0.63 0.735 0.67 0.65 0.705 0.695

W/T/L 3/1/8 0/0/12 1/1/10 1/0/11 3/0/9 1/0/11 2/0/10
AVG. 0.8328 0.7938 0.819 0.8201 0.8189 0.8261 0.8178
AVG. RANKS 3.125 5.5 4.0417 3.3333 4.0833 3.7917 4.1250
a

NRS-SFSF(k) with only a little improvement using SVM. However,
this cannot deny the effectiveness of our new framework.

• OSFSMI is the fastest among all these competing algorithms on
the running time, and NRS-BASE(k) is the slowest on average
ranks. However, there is no significant difference between NRS-
SFSF(k) and OSFSMI on running time. OFS-A3M is a little faster
than NRS-SFSF(k), for it need not sort all the neighbors to find
the 𝑘 nearest ones. NRS-SFSF is faster than NRS-BASE for the fea-
ture filtering component can save time during streaming feature
selection.

• On the mean number of selected features, OFS-A3M selects the
fewest, and NRS-BASE(k) selects the most. In terms of the non-
significant feature removing component, our new derived algo-
rithm can select fewer features without much predictive accuracy
11

2

loss. Thus, RS-SFSF can make the selected feature subset compact
and informative.

In sum, in terms of our RS-SFSF framework, the new neighborhood
Rough Set based algorithm NRS-SFSF(k) can get competing or better
performance in the predictive accuracy with fewer selected features.

6.4. RS-SFSF with fuzzy rough set model

For FRS-SFSF, we compare it with FRS-BASE (the baseline algorithm
RS-SFS-BA with fuzzy Rough Set model). Besides, we set 𝛼 = 0.05
s a practical value for FRS-SFSF, just like OFS-Density (Zhou et al.,
019a). The predictive accuracy, running time, and the mean number
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Table 10
NRS-SFSF vs. competing algorithms on running time (second).

Dataset NRS-SFSF(k) NRS-BASE(k) OSFS SAOLA OFS-A3M OFS-Density OSFSMI

Leukemia 1.9448 2.3996 2.0979 1.9214 1.3796 1.9315 1.1655
LungCancer 13.0779 15.5031 14.3279 13.3706 22.5779 274.6838 4.6758
Colon 0.5142 0.5366 0.562 0.4861 0.1576 0.4959 0.1785
Lymphoma 1.0095 1.0655 1.0131 1.1049 3.2354 1.0448 2.0227
Prostate 2.2653 2.8307 2.4355 2.2333 0.8586 2.3447 1.2132
Srbct 0.5796 0.629 0.603 0.5496 0.6002 0.5372 0.433
Dlbcl 2.1495 2.4536 2.1817 2.0384 1.0628 2.1136 1.1397
Breast 9.7487 12.6079 10.9088 9.6887 1.8261 28.986 1.9456
Ovarian 25.3432 31.0848 26.9498 25.2498 15.4249 24.8025 7.6841
Leukemia(3c) 1.939 2.432 2.0885 1.9134 1.3968 1.8939 1.1654
Leukemia(4c) 1.9977 2.5824 2.1716 1.9134 1.3534 1.8962 1.2372
Arcene 4.0241 5.1495 3.9732 3.7405 1.0297 3.6411 1.2356

W/T/L 1/0/11 0/0/12 0/0/12 0/0/12 3/0/9 0/0/12 8/0/4
AVG. 5.38 6.60 5.77 5.35 4.24 28.69 2.0
AVG. RANKS 4.2500 6.4167 5.4167 3.50 2.5833 4.0 1.8333
Table 11
NRS-SFSF vs. competing algorithms on mean number of selected features.

Dataset NRS-SFSF(k) NRS-BASE(k) OSFS SAOLA OFS-A3M OFS-Density OSFSMI

Leukemia 9.7 52.3 8.2 3.3 2.4 23.7 8.3
LungCancer 5.5 50.4 5.5 11.1 3.6 46.4 9.1
Colon 11.8 33.8 17.4 5.9 1.5 3.6 4.6
Lymphoma 5.2 31.3 3.2 9.5 2.9 40.6 8.1
Prostate 11.2 47.9 11.5 4.6 1.7 11.7 6.1
Srbct 11.8 51.5 6.5 5.8 2.6 19 6.7
Dlbcl 7.5 43.6 9.4 2.8 2.2 14.2 7.8
Breast 12.4 57.4 34.9 8.2 2.1 15.4 7.7
Ovarian 5.1 88.1 3.7 7.4 3.3 9.2 9.4
Leukemia(3c) 12.2 58.6 11.6 6.8 2.8 21.2 7.6
Leukemia(4c) 19.6 74.5 15.1 5.3 2.5 21.6 8.2
Arcene 17 66.8 26.8 9.3 2.2 17 7.4

AVG. 10.7 54.6 12.8 6.6 2.4 20.3 7.5
AVG. RANKS 4.0833 6.9167 4.0417 3.0000 1.0 5.4583 3.5000
Fig. 7. NRS-SFSF vs. NRS-BASE in cases of KNN, SVM and CART.
f selected features are shown as Figs. 7 and 8. The statistical perfor-
ance of FRS-SFSF VS. FRS-BASE is shown as Table 12. According to

he Nemenyi test, the value of CD (critical difference) is 0.5658.
The p-values of the Friedman test on KNN, SVM, and CART are 0,

.0562, and 0.1641, respectively. Thus, there is a significant difference
etween FRS-SFSF and FRS-BASE with KNN on predictive accuracy.
eanwhile, there is no significant difference in cases of SVM and CART.
he p-values of running time and the mean number of selected features
re 0 and 0, respectively. Thus, there is a significant difference between
RS-SFSF and FRS-BASE on running time and the mean number of
elected features.

In general, FRS-BASE spends 20 times more running time than FRS-
FSF and selects eight times more features than FRS-SFSF on average.
ompared with FRS-BASE, our new framework based algorithm selects

ewer features but achieves a competing or higher predictive accuracy.
hus, this fully demonstrates the effectiveness of our new proposed
12

ramework.
7. Conclusions

In this paper, to make full use of the advantages of the Rough Set
model in data mining, we applied Rough Set concepts and methods
into streaming feature selection and proposed a generalized assembly
Rough Set based framework, named RS-SFSF. To maintain a feature
subset with high correlation and low redundancy, RS-SFSF divided
the streaming feature selection into three main components: irrelevant
feature discarding, relevant feature selecting, and non-significant fea-
ture removing. With the definitions of feature relevance, irrelevance,
and redundancy from the Rough Set perspective, we present a general
feature dependency calculation method from three levels: Rough Set
model, positive region, and consistency calculation. Based on the RS-
SFSF framework, researchers in different fields can quickly construct
new algorithms step by step. To validate our new framework’s effective-
ness, we derived four new RS-SFSF based streaming feature selection
algorithms with the classical Rough Set model, neighborhood Rough Set

model (𝛿 neighborhood relation and k-nearest neighborhood relation),
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Fig. 8. NRS-SFSF vs. NRS-BASE on running time and mean number of selected features.
Table 12
The statistical performance of FRS-SFSF vs. FRS-BASE.

FRS-SFSF FRS-BASE

KNN
W/T/L 12/0/0 0/0/12
AVG. 0.8735 0.8406
AVG. RANKS 1 2

SVM
W/T/L 2/2/8 8/2/2
AVG. 0.8851 0.8804
AVG. RANKS 1.75 1.25

CART
W/T/L 8/0/4 4/0/8
AVG. 0.8280 0.8151
AVG. RANKS 1.3333 1.6667

Running time
W/T/L 12/0/0 0/0/12
AVG. 2.82 56.24
AVG. RANKS 1 2

Selected features AVG. 62.1 516.4
AVG. RANKS 1 2
A

F

R

C

C

D

D

E

G

H

H

H

J

K

L

and fuzzy Rough Set model, respectively. Experiments conducted on
twelve real-world datasets demonstrated that RS-SFSF could select a
compact and informative feature subset.

Based on our new framework, it is easy to derive new practical
streaming feature selection algorithms according to the specific ap-
plication problems. For example, we can construct a new algorithm
based on the neighborhood Rough Set model to handle mixed stream-
ing features with the heterogeneous Euclidean-overlap metric (HEOM)
based dependency function or a new algorithm with the fuzzy Rough
Set model and a proper fuzzy similarity relation. However, Rough Set-
based methods usually have a high time complexity. Thus, we will
focus on reducing the time complexity of Rough Set-based streaming
feature selection in the future. Meanwhile, the model’s scalability and
robustness will be discussed in our future work.
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